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NUMERICAL SIMULATION OF COMBINED
HEAT TRANSFER IN A PLANAR LAYER ON A
NET HAVING AN ARBITRARY THICKNESS STEP

V. P. Zamuraev UDC 536.24

In many treatments, one needs to incorporate processes occurring at various rates and having various time or spatial
scales. A good example is shock-wave structure [1]. To establish equilibrium in the translational degrees of freedom, each
molecule must make two or three collisions, while dozens of collisions are required (under normal conditions) to attain
equilibrium in the rotational degrees of freedom, and many more for the vibrational degrees of freedom (thousands or hundreds
of thousands at about 1000 K). A similar situation occurs in the flow of a chemically reacting medium when one incorporates
energy transfer by radiation.

The following approaches can be employed in simulating such cases. One involves using models in which the rates
of some processes are taken as infinitely great, while other processes are considered as frozen, and one calculates only for
processes whose rates do not differ greatly. This leaves open the question of the fit to the actual case. In another approach,
one uses a calculation net corresponding to the fastest process. Then one has problems over run time and memory, while the
accuracy remains an open question. One can also use different nets, one for each process.

Interest attaches to using a coarse net corresponding to the slowest process and correcting for the fast processes. That
approach is considered here in the examination of energy transport simuitaneously by convection, thermal conduction, and
radiation.

The spectral attenuation coefficient often varies greatly with frequency. A medium transparent at one frequency may
be optically dense at another. If the optical thickness for the spatial step in the net is of the order of or greater than one, there
may be unsatisfactory accuracy in calculating the temperature pattern [2, 3]. The stability of the numerical solution also comes
in question.

In the 1960s, I proposed a method of considering radiative-conductive heat transfer in a planar layer on a net having
a large optical thickness for the step. Only absorption and inherent radiation from the medium were considered. That method
has been used to calculate the radiative cooling of air behind strong shock waves [4, 5]. This is now extended to a radiative,
absorbing, and scattering medium.

The topic has been considered by others. A method of numerical solution has been given [6] for the nonstationary
transport equation in a planar layer, which is applicable to optically coarse nets [7]. In [8], the method was extended to
incorporate motion of the medium with spherical symmetry. The [6] method involves detailed solution of the transport equation
and then integration of the radiation intensity with respect to solid angle. Astrophysical treatments [9] concern the angular
intensity distribution. In some cases in gas dynamics, there is no need for a detailed solution to the transport equation. In [7,
10}, the [6] method was adapted to equations describing radiation transport in a first approximation in the spherical harmonic
method (in the diffusion approximation). The numerical method proposed below enables one to avoid detailed solution of the
transport equation but is based on equations accurate under certain conditions.

The method has been devised for a planar layer but can be used approximately for a boundary layer, for flow and heat
transfer in a channel, for high-current arcs, and so on. The [11] data indicate the error when one uses the planar-layer
approximation for a boundary layer. Isolated results from the present research have been published in [12, 13].

The following is the radiation transport equation for a planar layer showing emission, absorption, and scattering [2]:
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in which J(r, u) is the spectral radiation intensity, 7 = [ k(y’)dy’, the optical thickness, y the coordinate transverse to the
0

layer; p = cosf; 0, the angle between the radiation direction and the y axis, JO, the Planck function, k the attenuation
coefficient, which equals the sum of the absorption and scattering coefficients; w, the single-scattering albedo; and n, the
refractive index. An expansion in terms of Legendre polynomials containing a finite number of terms is used for the scattering
indicatrix, which takes the following form for a planar layer with allowance for integration with respect to the azimuthal angle:

y(u, p') = Ea’P‘(u)P,(u’), a, = 1. @)
=0

It is assumed that the boundaries of the layer radiate and reflect diffusely, so

1)
10, p) = e27°0) — 2, f70, pyu'du’, > 0,
- 3)
I, p4) = el ) + 2 JIx ,pu'du’, p < 0
0
(¢ and r are the spectral degree of blackness and spectral reflection coefficient of the corresponding boundary).

The (1)-(3).problem reduces to a system of / 4 3 linear integral algebraic equations. The formal solution to (1) is
written as the preliminary step:

J(v, u) = J(0, wyexp(=7/p) + [f(v', w)exp(~G=7')/p)de' /u, u > 0,

0
m )
J(x, ) =1(z,, wexp((x, — I)/u) = [£(t', wyexp(=(z = ©)/p)dr' /u,

We introduce the intensity moments:

1
M(7) = 2 J(z, u)P (u)du. ®
-1

The moment for r = 0 is the product of the velocity of light and the radiation energy density, while it is the radiation flux for
r = 1. Equations (4) are multiplied by P (n), integrated with respect to the corresponding values of x, and are added. With
(2) we get a system of / + 1 linear integral equations for the (5) moment [ = 1:

MG@)=JZ @)+ (-V)T Z(x, —71)+ z(fgox(r’)zﬁ(r -t)dr’ +
=0 0

. ©)
+ (=1 [ ()2 (z' = v)dr’), r= 0,1, .., L

Here

J,=22J(0,p) (> 0); J = 2m(z,,p) (0 < O0);

P, = 2t(1 - w)? T’ + %wMo;P,= %wa,M, (s=1,...,0;
1
Z (v) = [exp(—7/p)P (u)P (u)du/p.
1]

The functions Z,(7) are expressed in terms of integroexponential functions, e.g., Zgo(r) = E((7), Zgy(7) = Ex(7),
Z11(1) = E3(7). In the general case

QDD (—1ytiar-2012s~2))

_— ) 1),
v AN S0 = Hr=D(r=2) 7 (s—NWs=2)! ’"'2("’7”( )

Z,() =
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where the upper limit in the summation is the integer part of the fraction.
Equations (6) have been written on the basis that the radiation from the layer boundaries is isotropic. Jg and J, are
derived from the (3) boundary conditions, which expressed in terms of the intensity moments are

e,(J, — 20%20°(0)) + 2(1 — e )M (0) = 0,

e (J, — 2n'nl(x)) - 2(1 - e M (z ) = 0. @

There is a difference from the standard spherical harmonic method, where the unknown quantities are also the intensity
moments, in that one obtains system (6) and (7) in this approach as one close for finite / (the number of equations is equal to
the number of unknown quantities). The solution gives the moments up to order /. If necessary, one can also determine higher-
order moments. For that purpose, (6) should be supplemented with the corresponding equations. Each new equation introduces
one new unknown quantity. If some of the coefficients in the (2) expansion for the scattering indicatrix are zero: a; = 0,
0 < s <[, then the (6) equations for the moments with the same indices need not be considered, an exception being the case
a; = 0 with diffuse reflection from the boundary surface, since M| with that type of reflection influences the other intensity
moments via the (7) boundary conditions. If there is specular reflection, the corresponding boundary condition can be satisfied
in that method only approximately.

The numerical solution to (6) and (7) is derived as in {3] by means of the net r = 7; (i = 0, 1, ..., m), g = 0. The
step in the net A7; = 7; — 7;_; in general is variable. The (6) equations are written at the nodes. The factors ¢4 (7) in the
integrands are approximated at each step by means of a linear function of 7, and for even (r + s) in the steps adjacent to the
working point by means of a quadratic function. The (6) equations for the nodes at the boundaries of the region have the ¢ (7)
factors approximated in the steps adjoining the boundaries in all cases by a quadratic function. Then the (6) equations reduce
to a system of linear algebraic equations:

M,=1Z () + (- Z,( ~7)+ ) (—p,Yis)
=0

— (=1, Y'(x =) + (1 + (=1)")p,¥"(0)

+ D (Yifr, - 1) - Yz, - 7)) @
j=l

+ (=1 Dy Yz, —7) - Vit - ) +48),
=i+l

r=0,1,..,L,t=0,1, .., m

Here M, = M(1); p,= p(t); ¥, = Ap,/Ar; Y (r) =~Z (7); a prime denotes differentiation with respect to the argument,

and A; are additional terms related to the quadratic approximation for the ¢ (7) functions:
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A= 6a(¢:jol - wﬂ‘)(eni + (- 1)’”"3»:;«1)/(Ari + Atin)’
i=1,..,m-1,
A, =W, t//ﬂ)enl/rz,Am =(y,, — ¥, Je.. (At _+ Ar ),
e, =2 Y (0) — Y (Ar)) + Ar( Y (0) + Y{Ar)),

1
8, =L+ (=1™).

This difference approximation for (6) giving the M, moments satisfies the limiting approximations for the optically thin and
thick cases:

T >0 M, >, + (=1YT)Z (0), i=0,1,..,m,

At > w: M = D (1 + (=1)™)(p,Y"(0)

=0

1
+ 51+ (1))’ Y, (0)) + (1 = (=)™, Y(0)),

i=1,..,.m-1,

My= 1,2, (0) + X (=10 Y (0) = ¢' Y (0) + ¢'¥ (0)),

=0

M, = (=1)7,2,(0) + N (2, (0) + pLY(0) + p.'Y, (0)).

=0

The coefficient 8, in the expression for A ; could be taken as one for any s, which does not affect the error in approximating
the equations. On the other hand, the equations written for the internal nodes and for the nodes at the boundaries of the region
agree best one with another. However, the computational algorithm becomes somewhat more complicated.

One adds (7) to system (8), which with these symbols becomes

ey — A'IY + (1 — e )M, = 0, 9
e (J, = n'nll) ~ (1 — e M, = 0. ©

The system of N = (m + 1)({ + 1) + 2 linear algebraic equations in (8) and (9) includes the N unknown quantities
M;@c=0,1,..,4Lt=0,1,..,m),Jy, ), and it can be solved by standard methods. Here I propose the following method.
We distinguish on the right-hand sides of the (8) equations the terms dependent on the intensity moments M; (s =, j=
i —1,i,i+ 1), which determine the contributions for s = r to the limiting approximations for M;. These terms are
combined into groups denoted by ®1;:

@1 = 2p1,Y" (0) — ol
Apl
At

ri=1 YI 'rr(Ari) - ? 1u’¢l Y' ,”(AT“ 1)

Apl .
+ =AY (0) = V' (A7) + —_(At‘.::l Y (At,,)
bpl ., Apl,
- )/'”(0)) + ( Ari:ll - )(em_ + eﬂ}.“)/(A‘KI + Arivl)’

i= l,:--,m_ 11
t, bpl,, A‘Plrl)

Ap
Bly = pl,¥f0) = p1,¥" (A7) + LAY (A7) - ¥,(0) + ( uy o

eﬂl/ T,

Apl
o1 = el Y'(0) - «plm_l)”;(Arm) + E—(Y;(O) - Y(A7))

Apl_,  Apl,
+ ( i ﬁ)em/(Arm +4r,_ ), r=01,..,L
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Here plg; = 1126Mg;; ¢l = @5 (s = 1, ..., ]). All the other terms on the right in (8) form the $2; groups. One then has
the following successive-approximation scheme for solving (8):
MeD = 014D + @29V, r=0,1,..,L,1=0,1,...,m

These equations become

M(:+l) M(:#l) + C’OM(:*l) + d

l() ”?
a MY = BMED 4 e MY +d = 0,1=1,..,m-1, (10)
s+1) _ (s+1) s+ =
a M® b MED + ¢ MO 4+ d 0,r—0,l,....

System (8) as it were splits up into / + 1 subsystems. Each of these subsystems is characterized by a certain value of r and
has a matrix that can readily be reduced to three-diagonal form by eliminating M, and M, ;, _, correspondingly from the first
and last equations in (10) by means of the equations fori = 1 and i = m — 1. This means that the pivot method can be used
in solving (10).

The following explanation is required here. When one calculates d;; = $2,;(55*1), the moments of order r are taken
from the previous approximation (with number s), while the moments of order different from r already derived in
approximation s + 1 can be used in that approximation. The order in which the moments are calculated may be important.
It would be more logical to distinguish all the terms on the right in (8) that determine the contributions in the limiting cases
and write those terms in approximation s + 1, while the others are written in approximations s and then one applies matrix
pivot fitting.

A numerical experiment was performed to examine the convergence: I calculated isotropic scattering in a planar layer
having absolutely black boundaries. The optical thickness of the layer varied from about 0.3 to about 500. The zeroth
approximation for the integral radiation density u was provided by the distribution in a layer having optical thickness zero. The
calculations were performed with a uniform net, and the coordinate transverse to a layer was split up into 20 steps. Figure 1
shows results for u and for an optical thickness of the layer 7, = 100 (values of u referred to 286T4 /c), with Ty = 0.1 Ty,
@ = 1. Line 1 shows the zeroth approximation, while lines 2 and 3 show the first and second ones, with points 5 showing the
calculation with a local error of 1% (seventh approximation). In that figure, the latter results merge with the values obtained
with an error of 0.1% (tenth approximation, line 4). The numerical experiment confirmed the expected rapid convergence to
the exact solution.

For linear anisotropic scattering, I first calculated the distribution for the first moment in the layer, which was then
used to calculate the values of the zeroth moment. The successive approximations were repeated. That procedure with w =

= 1 in the limit A7 >> 1 (A7 = const) corresponds to the successive —approximation scheme

M("l) ZM(:*I) + M(.nl) — "'Af(M( +1) _ M(”l)) - 0’

i+l i+l 14~

MED = 21+ SAIMED + MERY — 2ac(ME),

L+l 0j+1

- M) =0.
It is simple to show that this is stable for any Ar.
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System (6) should be solved together with the energy equation, so the next necessary step is to construct the difference
analog of the energy equation, which should have correct results in the limiting cases of optically thin and thick layers. One
is concerned primarily with the difference approximation for the radiation flux divergence, which may be written as

divq = [kQdv, (11)

in which the integration is with respect to frequency, while for Q one derives an expression from (1) by integrating it with
respect to solid angle: Q = (1 — w)(47rn210 — My). If we now use (6) for M, then

Q= (WO(T) - Jn)Ez(T) + (Po(r) - j,,.)Ez(r,,. - 1)

- Y e (N2, (x — ) + (<1 [p )2, - 1))

=1 @

= J(p&) = e @NET - v'|yar".
(]

The corresponding difference analog is derived from (8):

Q, = (P — TOELT) + (po, = T E(T, — 1) = D=9 Y1)

=}

=~ (1P Y (5, = 1) + (L + (=1))p,Y'0) + Sy (Yyr, — 1)

j=1

- (12)
- Y=t )+ (=1 Y v (Yr, —T) ~ Y — 1)
j=irl
+ Am] + Z‘pq(sj(lri - TI‘I) - E}(lrj - rj-[l))
J=1

- (V’o;;l - 'p&')(e(li + emj+ 1)/(AT‘. + ATH-I)'

Equations (11) and (12) approximate the radiation-flux divergence, including for optically dense media.
Further, Q is represented as Q = Q1 + Q2, where

892, 802,
Q2 = 92, (Ey(AT) + 92, E (AT, )~ 3 E(8T) + £ Ey(87,)
A¢2l.” le

- - le.
ar,, At‘. i

P2 = 2r(1 — W), & = (e + €4, )/ (AT, + A7, ) + 1/2.
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The expression for Q2; includes terms related to the inherent radiation from the medium at points 1 — 1, i, and i + 1. Those
terms provide correct values for Q; in the radiative thermal conduction approximation. For an optically thin layer (in the limit),
Q2; becomes zero.

The Planck junction J? in the expression for Q2; is linearized with respect to the small temperature difference Arj =
Tis+1 — Tjs in two successive approximations for the one-dimensional stationary case (or at two successive instants for
nonstationary heat transfer, or between two adjacent sections of the boundary layer, and so on): J; ¢, 10 = 1,0 + (IdT),AT;.
All the other quantities in Q2 and also Q1 are calculated from the temperature profile in the preceding approximation (with
number s).

That approximation for the radiation term in the energy equation provides difference sachems stable for any optical
thicknesses in the spatial step. In the present case, the integrodifferential energy equation is replaced by an algebraic-equation
system:

atAT,

i+l

— BLAT, + ctAT,_ + dt =0 (i=1,...,m-1),

AT, = AT_= 0. (13)

Here X
at = a,— [kg, audv; ot = b — [Kbudv;
L =c - fk;g;-lcuid"; dt =d + f(k(l = )M
— 4x(n’ %) dv;
with g;, b;, ¢;, and d; defined by approximating the differential terms in accordance with an inexplicit scheme, and
g = 2n(l — w)n¥(d)°/dT); au, = E,(At,, ) — hl; bu, = hl + h2;

cu, = E(At) — h2; hl = (e, — E|(Ar1,,)) /At
h2 = (¢, — E,(A1))/ Az,

i1’

This system is solved by the pivot method. The unknown temperatures are calculated from Ty, | = T;s + AT;.

The method was tested on radiative-conductive heat transfer in a laminar boundary layer on a flat plate. As we were
concerned mainly with methods, various simplifying assumptions were made. In particular, the product of the density p and
the viscosity was taken as constant. In that case the hydrodynamic and thermal treatments separate for the variables £ = x,

y
n = 1/¥X [ pdy (x is the coordinate along the plate as referred to a certain characteristic dimension /, with y the coordinate
0

transverse to it as measured in terms of § = I/4/Re, and Re is the Reynolds number). The flow was described by the
dimensionless current function f(n) defined by the solution to the Blasius treatment [14].
The energy equation is as follows with the boundary conditions written in terms of those variables:

#T 1 AT 1 df, T
= £~ = b
a’lz+2 an Nto pfka-dv" d,,_a&‘

T=T, for =0, T=1 for g = oo,

(14

Here the temperature T is referred to the value in the incident flow; constant values are used for the product of the density o
and thermal conductivity A\ and also for the specific heat at constant pressure; the Prandt! number is one, and the Eckert number
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is zero; N = 28T3,,8/A is the radiative-conductive heat transfer criterion; the parameter 75 = k& characterizes the optical
thickness of the boundary layer (k is the characteristic value of the radiation attenuation coefficient); Q, = (1 — wv)(2nszv°
— u,) is the dimensionless divergence of the spectral radiation flux (Q,dv is referred to 25’I4°°); u, JV0 are the spectral
radiation density and Planck function appropriately rendered dimensionless; the attenuation coefficient k, is referred to the
characteristic value k; and the refractive index n, was taken as one.

The radiation energy density and flux were calculated in the planar-layer approximation [11], i.e., it was assumed that
these quantities are completely determined by the corresponding temperature profile (and composition) in a given section of
the boundary layer (value of £ fixed), which is equivalent to solving the transport equation for the one-dimensional planar case.
In other words, the solution to (10) was used to calculate the radiation term in (14).

The temperature profiles were calculated from the (13) inexplicit difference scheme. The temperature varies most
rapidly near the plate, so we replaced n by the variable v = a(l — exp(—bn)) (0 < v < 1); in the calculations, a = 1.01,
b = 0.25, and the step in v was constant. I used a logarithmic scale for £ with step h = Alnf. The conditions at the outer edge
of the boundary layer were transferred to a finite large distance (this was done by choice of a in the expression for v).

The calculations were performed in the following sequence. For each section in the boundary layer, I used (10) to
calculate the radiation flux and radiation energy density. Then I used (13) to derive the temperature distribution in the section.

Numerical results were obtained for a gray gas having attenuation coefficient proportional to the density with isotropic
radiation scattering and with allowance for the anisotropy (for a two-term scattering indicatrix y(u, u') = 1 + ajup’, a; =
1). The albedo w was varied from 0 to 1 (w = 0; 0.3; 0.5; 0.8; 0.95 and 1). Results were obtained for a black plate, Ty =
0.1, N = 5, 7, = 1 (this is the model considered in {3] for w = 0). The number of steps transverse to the boundary layer
was m = 20, h = 0.11729 in the main calculations. Individual calculations for albedos of 0 and 1 were performed for twice
that number of steps along the transverse to the boundary layer. The differences in temperature were less than 1%, but they
attained several percent in the radiation density. Here £ varied from 2 X 104 to about 900, which corresponds to optical
thicknesses of the boundary layer from about 0.3 to about 500. For small £ (optically transparent boundary layer), the errors
in the radiation energy density were less than 1%. For £ > 27 and w = 0, the errors in the radiation flux remained of the
order of several percent at all points within the working region and became considerable at the plate, which is explained as
follows. At such large distances from the leading edge of the plate, the boundary layer is optically dense, and one can use the
radiative thermal conduction approximation to calculate the radiation energy flux. However, the corresponding difference
approximation gives a large error at the plate because the step transverse to the boundary layer is too large due to the rapid
temperature variation at the plate. That error in the radiation flux does not affect the temperature profile. The radiation flux
at the plate can readily be refined. For w = 1, the error in the radiation flux is not increased at large £.

Figures 2-5 show the results for isotropic scattering with the above parameters. Figure 2 shows temperature profiles
for w = 0 (solid lines) and individual temperature values for w = 0.8. For £ = 0, the temperature profile is self-similar when
ope does not correct for the radiation (optical thickness of the boundary layer zero). For w = 1, that profile remains unchanged
for all £. For £ = 892, the temperature profiles are virtually identical for all the values of the albedo considered, apart from

= 1, and in fact coincide with the self-similar profile for the radiative thermal conduction approximation. For w < 1, the
temperature profile alters as £ increases from one self-similar solution (curve for { = 0) to the other (curve for sufficiently
large £). The rate of alteration is dependent on the albedo.

Figure 3 shows the distribution of the radiation energy density u transverse to the boundary layer. As the optical
thickness of the boundary layer increases, the u distribution tends to the equilibrium one defined by u = 2T*. In Fig. 3, this
is in fact the curve for £ = 892, which is virtually the limiting curve for other w < 1. It is also clear that the equilibrium
distribution is established earlier in the region adjoining the outer edge of the boundary layer.

Figure 4 shows the distribution with respect to » for the total heat flux § (curves 1 and 2) and the radiative heat flux
q, (curves 3 and 4), with the heat fluxes referred to 0T 4% £ = 0.12 for curves 1 and 4 and £ = 3.2 for curves 2 and 3. The
total flux is equal to the sum of the radiative flux and the flux due to molecular thermal conduction. The solid lines give the
flux distributions for @ = 0 and the dashed ones for @ = 0.8. The total heat flux has a maximum at the plate, while the
radiative flux has one within the boundary layer. Near the plate is a region where the total flux hardly varies and there is
redistribution of the heat transported by radiation and molecular thermal conduction. The points in Fig. 4 show the radiation
energy fluxes calculated on the radiative thermal conduction approximation from the temperature profile for £ = 3.2 (v = 0).
That approximation applies for this £ starting at a certain distance from the wall, but closer to the wall, the error increases,
and the approximation is not suitable for calculating the radiative energy flux at the wall. However, the contribution from the
radiative flux to the total flux is small near the wall, and the total flux to the plate is almost entirely formed by the temperature
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profile close to the limiting one, so a numerical solution was obtained for ¢ > 3 (with these parameters of ones close to them)
that in a certain sense makes the radiative thermal conduction approximation applicable. It gives correct values for the radiation
flux near the wall only when £ becomes about 102, as can be seen from Fig. 5, which shows the distributions of the heat fluxes
at the plate for various values of the albedo (the solid lines give the total flux q and the dashed ones the flux due to thermal
conduction q,,,). The molecular heat flux to the plate shows a behavior for all the w other than 1 corresponding to shift in the
solution from the self-similar one without radiation correction (for small £) to the self-similar one corresponding to the radiative
thermal conduction approximation (for £ > 27 with w = 0 and somewhat later for other values of w). The total flux to the
plate for w < 0.8 varies slightly with w for £ < 1 and is almost independent of w for § > 1. The product g«/¢ tends
asymptotically to a constant value for large £. The accuracy in calculating this value of the total flux is limited by the error
in the difference approximation for the radiative thermal conduction at the plate.

Figures 6-8 give the results for linear anisotropic scattering with the above parameters. The solid lines in Fig. 6 show
the temperature profiles for w = 0.8 and a, = 1 in various sections of the boundary layer. For comparison, points 1 and 2
show the temperatures in isotropic scattering (correspondingly in the sections § = 0.62 and 892, w = 0.8, and a; = 0). The
temperature profile is independent of the radiation for { = 0. The maximum effect from the scattering anisotropy is seen on
the limiting profile (for £ - o), and it is small with these parameters. Figure 7 shows the distribution of the radiation energy
density u transverse to the boundary layer (symbols as in Fig. 6, w = 0.8). Here again, the largest effect from the scattering
anisotropy occurs for large £. For § = 892, the relative change in the radiation density due to linear anisotropy is maximal
near the plate (this is not evident in Fig. 7 because of the scale used).

Figure 8 gives the heat flux distributions along the plate due to molecular thermal conduction g, and the total flux g
(dashed and solid lines) with a; = 1 for the various albedos. Points 1-3 show the heat fluxes in isotropic scattering (they
correspond to w = 0.8, 0.95, and 1) with @; = 0. The pair of points 1 for a single £ represents the total heat flux (upper one)
and the flux due to molecular thermal conduction (lower one) and similarly for points 2. The points 3 show only the values
of the total heat flux. It is evident from Fig. 8 that the effects from the linear scattering anisotropy on the energy fluxes are
considerable. The radiative thermal conduction approximation becomes correct somewhat later than in the case of isotropic
scattering (at larger £). For £ > 100 (optically thick boundary layer), the error in calculating the radiation flux to the plate
becomes large, as for isotropic scattering, and the reason is the same.

Signs of computational instability occur for 0.8 < w < 1 with isotropic or anisotropic scattering for £ > 103 (optical
thickness of the boundary layer greater than 600, and minimum transverse step greater than 5), which is evidently a
consequence of the separate solution of the energy equation and (10) in each section of the layer for r = 0. No instability is
observed for w < 0.5 and w = 1 (the calculations were performed up to £ = 10%). The run time with a BESM-6 computer
was about 80 sec to calculate one model up to £ = 900.

This numerical experiment shows that the proposed method is effective in solving stationary and nonstationary cases
of radiative-conductive heat transfer in a planar layer on nets with any optical thickness for the step.

The above method of solving the transport equation also gives the angular distribution of the radiation intensity at any
point in the layer as-a series in Legendre polynomials if (6) has been solved for a sufficient number of intensity moments. The
same method can be used in astrophysical treatments.

I am indebted to N. A. Rubtsov for a useful discussion on the results.
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